Skip to main content



Added in v1.25

The text2vec-ollama module enables Weaviate to obtain vectors using Ollama. Ollama is a tool for simplifying the process of running embedding and large language models, such as GPT-3, on your own hardware. This module allows you to use Ollama to generate embeddings for your data in Weaviate.

Key notes:

  • This module is not available on Weaviate Cloud (WCD).
  • This module assumes an Ollama endpoint is available to you (e.g. by running a local Ollama instance on your own device).
  • Your Weaviate instance must be able to access the Ollama endpoint. If you are running Weaviate via Docker, you can specify the Ollama endpoint using host.docker.internal to access the host machine from within the container.
  • Enabling this module will enable the nearText search operator.
  • The default model is nomic-embed-text.
    • The specified model must be available in the Ollama instance you are using.

Weaviate instance configuration

Not applicable to WCD

This module is not available on Weaviate Cloud.

Docker Compose file

To use text2vec-ollama, you must enable it in your Docker Compose file (docker-compose.yml). You can do so manually, or create one using the Weaviate configuration tool.


  • ENABLE_MODULES (Required): The modules to enable. Include text2vec-ollama to enable the module.
  • DEFAULT_VECTORIZER_MODULE (Optional): The default vectorizer module. You can set this to text2vec-ollama to make it the default for all collections.


This configuration enables text2vec-ollama, sets it as the default vectorizer, and sets the API keys.

version: '3.4'
- --host
- --port
- '8080'
- --scheme
- http
- 8080:8080
- 50051:50051
restart: on-failure:0
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
ENABLE_MODULES: 'text2vec-ollama'

Collection configuration

You can configure how the module will behave in each collection through the Weaviate schema.

Configurable parameters for the text2vec-ollama module are:

  • apiEndpoint - the URL of the Ollama endpoint.
  • model - the model to use for vectorization.

Ollama endpoint

Optionally, you can provide the apiEndpoint parameter as shown below to specify the URL of the Ollama endpoint.

If you are running Weaviate via Docker, with a local Ollama instance, specify host.docker.internal:<ollama-port> to access the host machine from within the container, where <ollama-port> is the port on which Ollama is running (default: 11434).


The following example configures the Article collection, with:

  • Vectorizer set to text2vec-ollama,
  • The Ollama endpoint set to host.docker.internal, and
  • The model set to snowflake-arctic-embed.
"classes": [
"class": "Article",
"description": "A collection called article",
"vectorizer": "text2vec-ollama",
"moduleConfig": {
"text2vec-ollama": {
"apiEndpoint": "http://host.docker.internal:11434",
"model": "snowflake-arctic-embed"

Vectorization settings

You can set vectorizer behavior using the moduleConfig section under each collection and property:


  • vectorizer - what module to use to vectorize the data.
  • vectorizeClassName – whether to vectorize the collection name. Default: true.
  • apiEndpoint – the URL of the Ollama endpoint. Default: http://localhost:11434.
  • model – the model to use for vectorization. Default: nomic-embed-text.


  • skip – whether to skip vectorizing the property altogether. Default: false
  • vectorizePropertyName – whether to vectorize the property name. Default: false


"classes": [
"class": "Article",
"description": "A class called article",
"vectorizer": "text2vec-ollama",
"moduleConfig": {
"text2vec-ollama": {
"vectorizeClassName": false,
"apiEndpoint": "http://host.docker.internal:11434",
"model": "snowflake-arctic-embed"
"properties": [
"name": "content",
"dataType": ["text"],
"description": "Content that will be vectorized",
"moduleConfig": {
"text2vec-ollama": {
"skip": false,
"vectorizePropertyName": false

Additional information

Available models

Please refer to the Ollama documentation for a list of available models. This list includes both large language models and embedding models; look for the word embed in the name or description to identify embedding models.

Download the desired model with ollama pull <model-name>.

Ollama documentation

Usage example

This is an example of a nearText query with text2vec-ollama.

import weaviate
import weaviate.classes as wvc
from weaviate.collections.classes.grpc import Move
import os

client = weaviate.connect_to_local()

publications = client.collections.get("Publication")

response = publications.query.near_text(
move_to=Move(force=0.85, concepts="haute couture"),
move_away=Move(force=0.45, concepts="finance"),

for o in response.objects:


Model license(s)

The text2vec-ollama module uses various models though Ollama. Please refer to the respective documentation for Ollama and the specific model for more information on their respective licenses.

It is your responsibility to evaluate whether the terms of its license(s), if any, are appropriate for your intended use.

If you have any questions or feedback, let us know in the user forum.