
Security Checklist
for Self-Managed Weaviate
Deployments

This document provides a list of security measures that you should implement
to protect the confidentiality, availability and integrity of your Weaviate
installation. The list is not meant to be exhaustive.

Weaviate supports authentication via any OIDC provider (such as
Okta, Microsoft or Apple), or your own OIDC token server, such as
Dex or Keycloak. Both the Weaviate server endpoint and our
clients can support the authentication flow.

OIDC allows you to authenticate external users with Weaviate,
without needing to issue them with a separate account or API key.
Weaviate will not have access to those users’ passwords.

Our authentication documentation details the configuration steps
required to enable and successfully test OIDC.

By default, Weaviate allows anonymous users to query the
database. Disable this feature by configuring
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: ‘false’.
With this feature disabled, anonymous access will return 401
unauthorized.

Review our documentation here for more details.

Enable OIDC Authentication

Disable anonymous access

Production Checklist:

Weaviate supports a number of roles for users to adopt when they
log in. Both Admin (read and write), and Read-only roles are
supported and can be defined per user within the Weaviate
configuration file.

Review our online documentation here for information on how to
enable and configure RBAC.

Support for more Granular RBAC permissions are expected to launch
by Q2 2025, please watch our releases page for more information.

Review our documentation here for more details.

Configure Role-based Access Control

By default when deployed via Helm, Docker or built from source,
Weaviate uses port 8080 for communications over http.

In addition, Weaviate’s Helm charts and Docker images include a
local Grafana instance that runs on port 3000 with a default login.

We recommend that the server(s) that Weaviate will run on are
configured with a firewall and restrictive rules to limit access to
known IP addresses.

In addition, we recommend that the Grafana default credentials
are changed.

Limit Network Access

Security Checklist for Self-Managed Weaviate Deployments

https://weaviate.io/developers/weaviate/configuration/authentication#oidc
https://weaviate.io/developers/weaviate/configuration/authentication#anonymous-access
https://weaviate.io/developers/weaviate/configuration/authorization
https://weaviate.io/developers/weaviate/configuration/authentication#anonymous-access

⚠

Our Backup Module

 ️ Remember that system backups triggered by the Weaviate client
do not include inactive or offloaded tenants.

We recommend that Weaviate’s built-in data backup tool is used to
create copies of your data at regular intervals.
includes the ability to natively integrate with Amazon, Google and
Microsoft’s storage solutions.

Alternatively, for more complex deployments, Weaviate can back up to
a local filesystem, which can be any underlying storage platform
provided it is presented to Weaviate as an accessible path (for
example via a persistent volume or bind mount).

Backups initiated via the Weaviate clients or the API will report a
status (successful or unsuccessful) which can be used with an
external monitoring tool to trigger an alert if a backup were to be
unsuccessful.

Although Grafana is included in the Weaviate Helm chart and Docker
images, we recommend that in production Weaviate is integrated
with an existing monitoring or observability solution, such as Grafana
Cloud, Datadog, Nagios or PRTG.

Configuration of external monitoring systems is outside of the scope
of this checklist, however we provide some deployment guidance
here which will help integrate with any external tool.

Configure Data Backups to a separate location

Monitor System Activity

In order to safeguard data in Weaviate, we recommend that the data
is stored on buckets/disks with encryption enabled.

When using storage buckets from Amazon, Google and Microsoft,
check that KMS encryption is enabled.

Encrypt Data at Rest

When deploying Weaviate in a production environment, it is
important to encrypt network traffic using TLS or similar.

We recommend that either a load balancer, proxy or service mesh
gateway is deployed in front of the Weaviate service with a valid
certificate, and that only TLS1.2 is enabled with support for
AES-256 ciphers.

If encryption inside the Weaviate cluster or infrastructure is
required, then we recommend a service mesh supporting mTLS or
similar is deployed.

Remember to set the HTTP Origin in the Weaviate configuration file
when this change is made. Review our documentation here for
guidance. 

Encrypt Communications (with TLS)

Security Checklist for Self-Managed Weaviate Deployments

https://weaviate.io/developers/weaviate/configuration/backups
https://weaviate.io/developers/contributor-guide/weaviate-core/setup
https://weaviate.io/developers/contributor-guide/weaviate-core/setup
https://weaviate.io/developers/weaviate/config-refs/env-vars#general

Update Weaviate

Patch Servers

Review Rules

Rotate API Keys

Weaviate supports replication to improve performance and as part
of a high-availability strategy. Replication is available on a
collection or across the entire Weaviate deployment.

When deploying in a cloud environment, we recommend that
replication is configured across at least two availability zones, and
if the use case is mission-critical, across multiple regions.

Note that replication is disabled by default and must be configured
for your use case.

Our Replication Documentation illustrates the process of
configuring replication and how to set consistency levels for data.

Enable Replication for high availability

EDR/Anti-Malware Scanning:

Please note that as our application is written in go-lang, some
commercial antivirus products may falsely alert when scanning
the binaries.

For performance reasons, we recommend excluding the
Weaviate data store from on-access scanning.

 We recommend that customers always use a supported version of

Weaviate, which is shown on our Github repository. We regularly patch

our software to add new features or when a vulnerability is discovered.

 For more information about the security and feature content of our

releases, review our release notes on Github.

 In addition to the Weaviate software, it is important to ensure that servers

and storage systems that host Weaviate are patched to the latest

versions supported by the vendor.

 If Weaviate is being run in a Docker or Kubernetes environment, then

ensure that any service mesh, security, proxy or load balancer appliances

are also kept up to date.

 As part of ongoing security, we recommend that rules governing access to

Weaviate are regularly reviewed and updated. This includes firewalls with

CIDR or IP based restrictions, users with privileged access to servers,

storage or the application and any access to system and data backups.

 Finally, the API keys generated by Weaviate should be considered

ephemeral and rotated regularly in line with industry best practices

 We do not recommend that API keys are hard-coded into clients or

integrated software, as the theft or loss of those keys could grant an

attacker privileged access to all Weaviate data.
Security Contacts: Please contact us via if you

discover a security issue or vulnerability affecting
our application, platform or services.

hello@weaviate.io

Security Checklist for Self-Managed Weaviate Deployments

Ongoing Checks:

https://weaviate.io/developers/weaviate/configuration/replication
mailto:hello@weaviate.io

